
1

Object Oriented Programming (Java)

October 2020

Q.NO. 1

a. Assuming that a, b, c and d are declared as below.

Int a=2, b=3, c=4;

Float d=5.0;

What are the data types and values of the following expressions?

I) (b+2)/b+2
II) B*c/d
III) a/(b/c-1)
IV) b%c*(a/d)
V) ++a+b—

Ans:-

I) (b+2)/b+2 = integer, 3

II) B*c/d = float, 2.4

III) a/(b/c-1) = integer, -2

IV) b%c*(a/d) = float, 1.2

V) ++a+b— = integer, 6

b. i. Write a for loop that prints the following output:

2 5 8 11 14

Ans:-

for (int i = 2; i <= 14; i += 3) {

System.out.print(i + " ");

}

ii. Convert the for loop in b(i) to a while loop.

Ans:-

int i = 2;

while (i <= 14) {

System.out.print(i + " ");

i += 3;

}

2

c. Write a switch statement to check the Day Number and show the Day Name
based on the table below:

Day Number Day Name
1 Monday
2 Tuesday
3 Wednesday

Other numbers Invalid Number

Ans:-

3

d. Study carefully the following program. It finds the common elements in
two different integer arrays (array1 and array2) and stores the in another
array called array3. At the end of the program, it prints out how many
common elements there are. There are several errors in the code. Identify
any five errors and fix them.

int array1[] = {1, 2, 3, 5, 8, 13, 21, 34, 55, 89};

int array2[] = {2, 3, 5, 7, 11, 13, 17, 19, 23, 29,};

int array3[];

int x, y;

for (x=0; x<10; ++x)

{

for (y=0; y<10; ++y)

{ if (array1[x] = array2[y])

{ array3[j] = array2[y];

++n;

}

}

}

System.out.println(“The total number of common elements” +n);

Ans:-

I've identified five errors in the code.

1. I added initialization for `array3` with a size of 10 to store common elements.

2. I added the variable `n` to count common elements and initialized it to 0.

3. I fixed the comparison in the `if` statement by changing `=` to `==` for proper
equality comparison.

4. I used the variable `n` as the index for `array3` to store common elements.

5. I corrected the print statement by using double quotes for the string and added
a space before the variable `n` for clarity.

4

Here's the corrected code with explanations for each error:

5

Q.NO. 2

a. Write a class called Cycle with the following description.

Instance variables/data members:

• model;
• year;
• price;

Member methods:

• default constructor;
• parameterized constructor;
• void input() – to input and store the title, author and price;
• void discount() – to reduce the cycle price by 10%
• void display() – to display the cycle model, year and price.

Ans:-

6

b. Write a main method to create an object of the class Cycle and call any one
the above member methods.

Ans:-

7

c. Draw the UML class diagram for the above Cycle class.

Ans:-

8

Q.NO. 3

a. What will be the output of the following code?

int i = 0;

int s = 1;

int [] a = {10, 20, 30, 40, 50, 60};

for (i=0;i<a.length;i++){

if (a[i]%3==0){

s=s+(a[i]/s);

a[i]++;

}

System.out.println(s);

}

Ans:-

1

1

31

31

61

61

9

b. Write java code that declares a 2-dimensional array of integers with four
rows and five columns. Use a nested for loop to assign values to the array
which is equal to row index multiply by column index.

Ans:-

10

c. Write a method in Java to compute the wages of an hourly employee. The
method should take the number of hours worked, the pay rate and the
overtime rate of this employee. The method should return the amount of the
pay. The computation of wages should include the fact that employees who
work more than 40 hours get more than the normal rate for overtime pay.
You only need to write the method not a full class or calling method.

Ans:-

d. Explain the difference between a get method and a set method. Give an
example declaration of each.

Ans:-

11

Q.NO. 4

a. Write a java program named “TotalHours.java” to calculate the total hours
worked by all employees in a department. The program should read the
hours worked by each employee from an input file called “hours.txt”. It
should then calculate and write the total hours worked by all employee into
an output file called “hoursout.txt”.

Ans:-

12

b. Give any two reasons for java.io.FileNotFoundException to be thrown at
run-time.

Ans:- In Java, the `java.io.FileNotFoundException` is an exception that is thrown at
runtime when there are issues related to file operations. Here are two common
reasons for this exception to be thrown:

1. File Not Found: This is the most common reason for `FileNotFoundException`.
It occurs when you try to access a file that does not exist at the specified path. For
example:

FileInputStream fileInputStream = new FileInputStream("nonexistentfile.txt");

If the file "nonexistentfile.txt" does not exist in the specified location, Java will
throw a `FileNotFoundException`.

2. Incorrect File Path: Another reason for this exception is providing an incorrect
file path. If the path you specify does not point to a valid file location, Java will be
unable to find the file, and a ̀ FileNotFoundException` will be thrown. For instance:

FileInputStream fileInputStream = new FileInputStream("C:\\InvalidPath\\file.txt");

If "C:\\InvalidPath\\file.txt" does not exist or is not accessible, a
`FileNotFoundException` will be raised.

c. Describe what modular programming is. Explain how Java support
modular programming by using suitable examples.

Ans:- Modular programming is a software development approach where a
complex system is divided into smaller, independent modules or components,
each responsible for a specific function or task. These modules can be developed
and tested separately, making it easier to manage and maintain large codebases.

Java supports modular programming through various mechanisms, with one of the
most prominent being the Java Platform Module System (JPMS), introduced in Java
9. Here's a brief explanation with an example:

1. Java Platform Module System (JPMS): JPMS allows you to encapsulate classes
and resources into modules, which are self-contained units of code. Modules can
declare their dependencies and expose only what is necessary for other modules
to use.

Example: Suppose you're building a Java application for a library management
system. You can create separate modules for different functionalities:

- `library.core` module: Contains core classes and interfaces for managing
books, users, and transactions.

13

- `library.ui` module: Handles the user interface and interacts with
`library.core`.

- `library.database` module: Manages database interactions, encapsulating
database-specific code.

2. Packages and Classes: Even without JPMS, Java supports modularity through
packages and classes. You can organize related classes into packages, which act as
modules at a smaller scale. By defining clear interfaces and access modifiers (e.g.,
public, private, protected), you can control the visibility and accessibility of classes
and their members.

Example: In a banking application, you can create a `com.bank.accounts` package
containing classes for various account types (e.g., `SavingsAccount`,
`CheckingAccount`). You can then control access to these classes to ensure that
only authorized parts of the code can interact with them.

d. In your opinion give a reason why is it necessary to decompose a large
module into multiple sub modules.

Ans:- Decomposing a large module into multiple sub-modules is necessary for
several reasons:

1. Modularity: Breaking down a large module into smaller sub-modules promotes
modularity in software design. Each sub-module can focus on a specific
functionality or feature, making the codebase more organized and easier to
maintain.

2. Readability: Smaller sub-modules are typically easier to read and understand
than a large, complex module. This improves code comprehensibility, making it
simpler for developers to work with and debug.

3. Reusability: Sub-modules can often be reused in different parts of an
application or in other projects. This reduces duplication of code and promotes a
more efficient development process.

4. Scalability: When new features or changes are needed, it's easier to scale and
adapt the software by working on smaller, self-contained sub-modules. This agility
helps in accommodating evolving requirements.

5. Collaboration: Decomposing a module allows multiple developers to work on
different sub-modules simultaneously. This parallel development can accelerate
project completion and encourage collaboration within a development team.

